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Abstract

Due to advancements in data acquisition, large amount of
data are collected in daily basis. Analysis of the collected
data is an important task to discover the patterns, extract the
features, and make informed decisions. A vital step in data
analysis is dividing the objects (elements, individuals) in dif-
ferent groups based on their similarities. One way to group
the objects is clustering. Clustering methods can be divided
in two categories, linear and non-linear. K-means is a com-
monly used linear clustering method, while Kernel K-means
is a non-linear technique. Kernel K-means projects the ele-
ments to a new space using a kernel function and then group
them in different clusters. Different kernels perform differ-
ently when they are applied to different data sets. Choos-
ing the right kernel for an application could be challenging,
however applying a set of kernels and aggregating the results
could provide a robust performance for different data sets. In
this work, we address this issue and propose a weighted ma-
jority voting to ensemble the results of three different kernels.

Introduction
Cluster analysis in one of the most common unsupervised
learning methods in the machine learning which is used to
discover underlying patterns or grouping in data. Cluster
analysis is performed to discover distinct individuals that
share common features within a large population and group
them in the same cluster (Monti et al. 2003). Clustering has
been increasingly used in the past decades to address mul-
tidisciplinary problems as an important step in data analy-
sis (Jain, Murty, and Flynn 1999) and data mining (Dhillon,
Guan, and Kulis 2004). Clustering techniques attempt to find
an optimal solution based on a clustering criterion (Nguyen
and Caruana 2007). To this end, several clustering methods
have been developed (Jain, Murty, and Flynn 1999) such
as K-means, Fuzzy c-means, mixture models, and spectral
clustering.

In this paper, we introduce a weighted majority voting
clustering based on normalized mutual information (NMI).
We aggregate the results of several clustering methods to
conclude a final clustering results. The focus of this study
is on the class of K-means clustering methods including K-
means, K-means++, and kernel K-means. K-means is a well
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known clustering method that is commonly used for cluster-
ing analysis. It is based on minimizing Euclidean distance
between each point and the center of the cluster to which it
belongs. The advantages of K-means are its simplicity and
speed while it suffers from random initialization of clus-
ter centers (Arthur and Vassilvitskii 2007). K-means++ is
an extension of K-means to address its shortcoming of ran-
dom initialization (De La Vega et al. 2003), (Har-Peled and
Mazumdar 2004), (Kumar, Sabharwal, and Sen 2004), and
(Matoušek 2000). K-means can discover clusters that are lin-
early separable. Kernel K-means is a non-linear extension of
K-means clustering method. Kernel K-means clustering, as
the name implies, uses a Kernel function to project nonlin-
early separable clusters into a space to make them linearly
separable.

Method
We study K-means based clustering techniques and ag-
gregate their results to provide a robust clustering analy-
sis method. These clustering methods include K-means, K-
means++, and kernel K-means with three different kernels.

K-means
K-means choose K centers such that the total squared dis-
tance between each point and its cluster center is minimized.
K-means technique can be summarized by first selecting
K arbitrary centers, which are usually, as Lloyds algorithm
suggests, uniformly selected at random from the data. Sec-
ond, each point is assigned to a cluster that is closest to it,
and this is determined by calculating the Euclidean distance
between each point and the cluster centers. Third, each new
cluster center is calculated based on the average of all points
belong to that cluster. Finally, the second and third steps are
repeated until the algorithm reaches stability. K-means ob-
jective function can be written as

∑k
j=1

∑
xi∈πj ‖xi − µj‖

2

,where πj is the cluster j, and ‖.‖ is denoted for Euclidean
distance throughout the paper.

K-means++
K-means++ is based on a particular way of choosing cen-
ters for the K-means algorithm. Suppose that n data points
χ ⊂ Rd are given, and there are K clusters. K-means++



Figure 1: Clustering results obtained by applying K-means, K-mean++, and kernel K-means with Gaussian, polynomial, and
tangent kernel functions to two noiseless inner circles.

Table 1: NMI scores for different clustering methods for two noiseless inner circles, and associated weights for kernel K-means
with the three kernel functions.

K-means K-means++ Kernel K-means

Gaussian Polynomial Hyperbolic Tangent
Two noiseless inner circles 0.278 0.278 1 0 0
Weights 1 0 0

algorithm can be summarized as follows (Arthur and Vas-
silvitskii 2007): First, choose one center uniformly at ran-
dom from the data points χ. Second, computeD(x) for each
data point x, where D(x) is the distance between x and the
nearest center that has already been chosen. Third, choose
one new data at random as a new center with probability

D(x)2∑
x∈χD(x)2 . Then, repeat the second and third steps until K

centers have been chosen. After obtaining the initial centers,
proceed as the standard k-means clustering.

Kernel K-means
Kernel K-means separates clusters that are nonlinearly
separable. The idea of kernel K-means clustering relies
on transforming the data into a higher-dimensional feature
space using a nonlinear function to project the points such
that they will be linearly separable in the projected space.
Kernel K-means algorithm follows (Dhillon, Guan, and
Kulis 2004):

1. Let {x1, x2, ..., xn} be the set of data points, k be the
number of clusters, πj be the cluster j, {πj}kj=1 be a parti-
tioning of points, and φ be the non-linear function. Then,
kernel matrix K can be constructed. Each elements in the
matrix is a dot-product in the kernel defined features space
as follow,

κ(xi, xz) = φ(xi).φ(xz), i, z = 1, 2, ..., n. (1)

where φ(xi) denotes the data point xi in transformed
space. The dot products φ(xi).φ(xz) are computed us-
ing kernel function κ. Some popular kernel functions are
Radial Basis Function (RBF) (Campbell 2001) known as
gaussian, polynomial, and sigmoid.

2. Randomly initialize each cluster center.

3. Compute Euclidean distance from each data point to the



Figure 2: Clustering results obtained by applying K-means, K-mean++, and kernel K-means with Gaussian, polynomial, and
tangent kernel functions to two noisy inner circles.

Table 2: NMI scores for different clustering methods for two noisy inner circles, and associated weights for kernel K-means
with the three kernel functions.

K-means K-means++ Kernel K-means

Gaussian Polynomial Hyperbolic Tangent
Two noisy inner circle 0.068 0.062 0.769 0.011 0.001
Weights 0.985 0.014 0.001

cluster center µj in the transformed space as follow:

φ(xi)− µj = φ(xi)−
∑
xi∈πj

φ(xi)

|πj |

= φ(xi).φ(xi)−
2
∑
xz∈πj φ(xi).φ(xz)

|πj |

+
2
∑
xz,xc,∈πj φ(xz).φ(xc)

|πj |2
(2)

where |πj | is the number of elements in cluster πj .
4. Assign data points to that cluster whose distance is mini-

mized.
5. Compute the new cluster centers µj as the average points

in transformed space belong to cluster πj as

µj =
∑
xi∈πj

φ(xi)

|πj |
, j = 1, 2, ..., k (3)

6. Repeat from step 3.
So, the objective function of kernel K-means is defined as:

D({πj}kj=1) =

k∑
j=1

∑
xi∈πj

‖φ(xi)− µj‖2 (4)

After applying the aforementioned clustering methods,
Normalized Mutual Information (NMI) is used to evaluate
their performance (Dhillon, Guan, and Kulis 2004). NMI is
calculated from a confusion matrix, whose entry (i, j), n

(j)
i

represents the number of points in cluster i and true class j,
as follow

2
∑k
l=1

∑c
h=1

n
(h)
l

n log
n
(h)
l n∑k

i=1 n
(h)
i

∑c
i=1 n

(i)
l

H(π) +H(ζ))
, (5)

where c is the number of classes,H(π) = −
∑k
i=1

ni
n log

ni
n ,

and H(ζ) = −
∑c
j=1

n(j)

n log n
(j)

n . Also, ni, n(j), and n are



Figure 3: Clustering results obtained by applying kernel K-means with Gaussian, polynomial, and tangent kernel functions to
two noiseless inner sine waves.

Table 3: NMI scores for different clustering methods for two
noiseless sine waves, and associated weights for
kernel K-means with three kernel functions.

Kernel K-means

Gaussian Polynomial Hyperbolic
Tangent

Two noiseless
inner sine waves 0.385 1 0.351

Weights 0.222 0.576 0.202

Table 4: NMI scores for several clustering methods for two
noisy separate sine waves, and associated weights
for kernel K-means with the three kernel functions.

Kernel K-means

Gaussian Polynomial Hyperbolic
Tangent

Two noisy
inner sine waves 0.61 0.785 0.347

Weights 0.35 0.451 0.199

total points in the ith cluster, total points in the jth class, and
total sample size, respectively.

NMI value ranges from zero to one. High NMI value
means that the true classes and identified clusters are con-
sistent. That is, most of the observations in the same class
are clustered in the same cluster (Dhillon, Guan, and Kulis
2004). Next is an explanation of weighted majority voting.

Weighted Majority Voting of Clustering
Algorithms
Majority voting is based on the idea that the judgment of
a group is superior to those of individuals. Majority voting
approach has been used in supervised learning (classifica-
tion) to combine classifiers so that more accurate results are
produced. The underlining assumption is that neighboring
samples within a ”natural” cluster are very likely to be co-
located in the same group by a clustering algorithm.

The algorithms can be summarized as follow: considering
the first clustering method, a data of size n is partitioned ,
and paired of samples are voted for association. Then, the re-
sults of clustering method are mapped into a co-association
matrix of size n × n, whose (i, j)th element (at the end)
represents the number of time the given sample pair has
co-occurred in a cluster. Each co-occurrence is considered
a vote toward their being in the same cluster. The previous
steps are repeated for each clustering algorithm considered,
with keeping track (accumulating) of the co-association ma-
trix. The co-association matrix is normalized by dividing its
elements by the number of methods. Then, majority vot-
ing associations are found for each sample pair (xi, xj) by
comparing the the (i, j)th element in the association ma-
trix ((i, j)thnormalized vote) with the fixed threshold 0.5. If
it is greater than 0.5, then the sample pair is joined in the
same cluster; if the sample pair were in different previously
formed clusters, join the clusters. For each remaining sam-
ple not included in a cluster, form a single element cluster
(Fred 2001).

In majority voting combination of general clustering al-
gorithms, if a particular sample pair is voted to be located in
cluster A using, for example, three clustering methods while
it is voted to be located in cluster B using two methods, then
this pair will be in cluster A even if the correct cluster is



Figure 4: Clustering results obtained by applying kernel K-means with Gaussian, polynomial, and tangent kernel functions to
two noisy sine waves.

cluster B. To overcome this shortcoming, we introduce the
concept of using ”weights” based on normalized mutual in-
formation (NMI) with majority voting algorithm.

After obtaining the clustering results of kernel K-means
for the three kernel functions, we combine these results
using the proposed weighted majority voting where the
weights are computed using NMI. Suppose that ζ1, ζ2, and
ζ3 are the NMI’s associated with Gaussian kernel, polyno-
mial kernel, and hyperbolic tangent kernel respectively. Let
w1, w2 and w3 be the weights associated with these three
kernels respectively and are computed by

wi =
ζi∑3
j=1 ζj

, i = 1, 2, 3. (6)

such that
3∑
i=1

wi = 1 (7)

Simulation
Kernel K-means clustering method with three different ker-
nels is compared with K-means and K-means++. Two-
dimensional simulations are generated for two nonlinear
clusters. First simulation contains two noiseless inner cir-
cles, while the second simulation is the noisy version of
the first simulation. Third and forth simulations are noise-
less and noisy inner sine waves, respectively. After generat-
ing the simulated data, the clustering methods including K-
means, K-means++, and kernel K-means with three different
kernel functions (Gaussian, polynomial, and hyperbolic tan-
gent) are applied. Each simulation has 100 iterations and an
NMI score is computed for each cluster method after each
iteration. The results are then combined using the proposed
weighted majority voting.

Results
We have applied three clustering methods, K-means, K-
means ++, and kernel K-means with three different kernels
to the simulated data and calculated NMI for each method.
Next, the weights based on NMI for each kernel function is
computed using Eq. (6).

First, we perform the cluster methods with two noiseless
inner circles and compute the corresponding NMI’s. Table 1
shows the NMI scores for the considering clustering meth-
ods with two noiseless inner circles. Based on NMI scores,
Kernel K-means clustering performs the best with Gaussian
kernel function as its NMI score is 1. Also, figure 1 shows
the resulted clusters for different methods for this simula-
tion where each color represents a cluster. It is clear from
the top right of the figure 1 that Gaussian kernel was able
to detect clusters that are nonlinearly separable as two in-
ner circles are clustered in different clusters. NMI scores for
polynomial kernel and hyperbolic tangent kernel functions
are zeros since half of the observations in the first cluster
come from first class and the rest of observations come from
the second class as it can be seen on the bottom of the figure
1. It is clear that kernel K-means performance depends on
the selected kernel function. So, it is imperative to aggregate
the clustering results of these kernel functions to produce ro-
bust outcomes. We have combined the results by computing
the associated weight to each kernel based on NMI score.
Gaussian kernel receives a weight of 1 since the NMI’s as-
sociated with the other two kernels are zero (Table 1). Since
Gaussian kernel has the weight of one for this simulation, the
aggregated clustering result by performing majority voting
is the same as kernel K-means with Gaussian kernel. That
is, regardless of the kernel function, the aggregated results is
the optimal solution. As these clusters are not linearly sep-
arable, K-means and K-means++ perform poorly with low



NMI’s trying to linearly separate the clusters in two groups
as it is depicted in figure 1.

Even when the inner circles are corrupted with noise, ker-
nel K-means with Gaussian kernel performance is robust
with NMI of 0.769 (Table 2). Other methods are not able to
separate the noisy inner circles into two clusters successfully
with corresponding low NMI’s (figure 2). Similar to the first
simulation the aggregated result is the same as clustering re-
sults of Gaussian kernel. It is clear that Gaussian kernel is
performing better than other kernel functions, and it gets the
highest weight based on its NMI score.

In the next simulation two inner sine waves with the same
frequency are generated. Kernel K-means with polynomial
kernel outperforms Gaussian and tangent kernels as it can be
seen in the clustering results (Figure 3) as well as the NMI
scores (Table 3). The computed weights using NMI scores
are 0.222, 0.576, and 0.202 for Gaussian, polynomial, and
tangent kernels respectively.

Next, the inner sine waves are corrupted with noise and
kernel K-means with different kernels are applied to this
noisy signal (figure 4). The NMI scores are reported in the
Table 4. Polynomial kernels perform better than the other
kernels with NMI scores 0.785. The aggregated result is sim-
ilar to the clustering results of polynomial kernel.

Conclusion
An important task in data analysis is dividing data into dif-
ferent groups based on their similarities by discovering un-
derlying patterns and extracting features. To this end several
clustering methods have been introduced for cluster analy-
sis. K-means and its extensions are broadly used for cluster
analysis. While K-means can identify the clusters that are
linearly separable, Kernel K-Means is introduced to sepa-
rate the clusters that are not linearly separable by projecting
the data elements to a new space using a kernel function in
which the groups are linearly separable. However, different
kernel functions do not perform the same when they are ap-
plied to different data sets. Therefore, choosing the right ker-
nel for an application is a challenging task. To address this,
one can apply a set of kernels and aggregate the results to
provide a robust performance for different data sets. In this
study, we introduced a weighted majority voting to combine
the clustering results of three different kernels. The proposed
method provides promising results since the weights pro-
posed to be assigned to kernel functions work appropriately,
and we are going to apply it to real applications where the
data cannot be linearly separated in different groups such as
Genomic datasets as well as climate data.
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