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Abstract

Elements in a sample date are demonstrated based on their
characteristics and in turn the characteristics are represented
by variables. Identifying the relationship between these vari-
ables is crucial for prediction, hypothesis testing, and de-
cision making. The relation between two variables is of-
ten quantified using a correlation factor. Once correlation is
known it can be used to make predictions. It means when
two variables are highly correlated, and if we have observed
one variable, we can make a prediction about the other vari-
able. A more accurate prediction will be made where there is
strong relationship between variables. Among several corre-
lation factors, Pearson correlation Coefficient has been com-
monly used. Distance correlation and maximal information
coefficient have been introduced recently to address the short-
comings of Pearson correlation coefficient. In this paper, we
compare these factors through a set of simulations and com-
bine them to introduce a more robust factor that can be gen-
erally used.

Introduction

Data analysis is crucial in almost every field of research such
as genomics, economics, physics, medical, social, and polit-
ical sciences. Identifying associations between/among vari-
ables is often required in analysis of large datasets (Hastie,
Tibshirani, and Friedman 2002). It is common to have many
variables in a dataset and it is difficult to manually exam-
ine the relation between each pair of variables (Reshef et al.
2011). It is also difficult to identify the important variables
if the correlation among them is not discovered.

There are several different measures to quantify the as-
sociation between variables in a dataset including Pear-
son’s correlation, Spearman’s correlation, distance correla-
tion, maximal information coefficient (MIC), maximal cor-
relation, and mutual information. Some of these correlation
measures can only detect linearly correlated data such as the
well-known Pearson’s correlation while some measures can
also detect nonlinear correlation such as maximal correla-
tion and MIC. In addition, some correlation measures can
characterize the independence. This means if the correlation
score yields a value of zero, one can conclude that the two
variables are independent.
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Several correlation measures are discussed in this paper.
These measures are Pearson’s correlation, Spearman’s corre-
lation, distance correlation, maximal information coefficient
(MIC), and maximal correlation. In addition, we proposed
some preliminary ways to combine these coefficients met-
rics. The idea of combining such metrics is useful especially
when the luxury of knowing the underline relationship is not
provided. The preliminary ways of combining them that are
considered are finding the maximum, mean, and median of
these measures. In the method section, the correlation mea-
sures that used throughout the paper as well as the ways of
combining them are introduced.

Methods

To explore the performance of correlation measures, vari-
ous measures are selected to closely analyzed them. These
correlation measures are Pearson’s correlation, Spearman’s
correlation, distance correlation, maximal correlation, and
maximal information coefficient (MIC).

Pearson’s Correlation

Pearson’s correlation is a measure of strength and direction
of the linear relationship between two variables. Its score
ranges between -1 and 1, and it describes the degree to which
one variable is linearly related to another. Pearson’s correla-
tion between two variables X and Y can be written as

. cov(X,Y) 0

OxX0y

,where cov(X,Y) is the the covariance between X and Y,
ox 1s the standard deviation of X, and oy is the standard
deviation of Y. So, Pearson’s correlation is the covariance
between X and Y divided by the product of standard devia-
tion of X and the standard deviation of Y.

Spearman’s Correlation

Another measure considered is Spearman’s correlation. It
assesses how well a monotonic function could describe the
relationship between two variables. It is a non-parametric
measure of correlation between variables. Spearman’s can-
not only be used on numerical data but also on any data
that can be ranked (Spearman 1904). Suppose that R =
(R1, Ra,...,R,) and Q = @1, Q2, ..., Q) are two vectors
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Figure 1: Random, linear, polynomial (fourth order), ex-
ponential, parabolic, sinusoidal with varying fre-
quency, sinusoidal with fixed frequency, and circle
relationship types for first simulation where there
is no noise added to the true signal.

of ranks obtained on a sample of size n, then Spearman’s
coefficient, r;, is given by (da Costa 2015):
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Spearman’s takes any real values between -1 and 1. If the
values in the series increase or decrease together, it will have
a positive value. However, if a values of one variable in-
crease as the other decreases, a negative spearman’s value is
obtained (da Costa 2015). In addition, no assumptions about
the frequency distribution of the variables are required in
Spearman’s correlation, and no assumption about the exist-
ing of linear relationship between variables is required (Bol-
boaca and Jantschi 2006).

Distance Correlation

Distance correlation, denoted by R , is a measure of depen-
dence between two random vectors X and Y, and its value
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Figure 2: Random, linear, polynomial (fourth order), ex-
ponential, parabolic, sinusoidal with varying fre-
quency, sinusoidal with fixed frequency, and circle
relationship types for second simulation where the
true signal is corrupted with low noise level.

ranges from zero to one. It uses Euclidean distance in its
formula, and it has two main properties: First, distance cor-
relation is zero if and only if the two random vectors are
independence, which means that obtaining zero value char-
acterizes the independence between the two vectors. Sec-
ond, distance correlation can be calculated between two vec-
tors of arbitrary dimensions; for example, X € RP and
Y € RY, where p and q are positive integers. This measure
only discovers the linear correlation and cannot discover
the nonlinear correlation. The empirical distance correlation
R, (X,Y) is the square root of the following (Székely et al.
2007)

CVEXY) o o
V2 (X)2(Y)’ Vn(X)y (Y) >0,

RalX:¥) = 0, V2(X)2(Y) =0
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Figure 3: Random, linear, polynomial (fourth order), ex- Figure 4: Random, linear, polynomial (fourth order), ex-
ponential, parabolic, sinusoidal with varying fre- ponential, parabolic, sinusoidal with varying fre-
quency, sinusoidal with fixed frequency, and circle quency, sinusoidal with fixed frequency, and circle
relationship types for third simulation where true relationship types for last simulation where true
signal is corrupted with medium level of noise. signal is corrupted with high level of noise.
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k=1 Breiman and Friedman (Breiman and Friedman 1985) de-
fined the Maximal Correlation (MC) between two real val-
_ B B ued random variables X and Y as
Apr = ag —ag. —a; +a.,
* .
Similarly p" =mazy, 5, p(f1(X), f2(Y)) @)
b = |Yi — Yi| B = b — by — by +b., where f{ : R — R, and f5 : R — R, are two arbi-

trary measurable mean-zero functions of X and Y, respec-
tively. So, maximal correlation is an optimization problem
) that trying to search for transformations of X and Y such



that Pearson’s correlation between transformed X and Y is
maximized (Nguyen et al. 2014). Maximal correlation does
not require assumptions on the data distribution. It can detect
non-linear correlations, and it is very efficient and robust to
noise.

Maximal Information Coefficient

Another important measure of independence is Maximal In-
formation Coefficient (MIC). MIC takes value between zero
and one, and it has two main properties: Generality and eq-
uitability. Generality means that with sufficiently large sam-
ple size, the statistic should capture a wide range of asso-
ciation such as linear, exponential, or periodic. Equitability
means that MIC gives similar scores to equally noisy rela-
tionships regardless the type of relationships. In addition,
with probability approaching 1 as sample size grows, MIC
gives scores of one to all noiseless functional relationships
and gives scores that tend to O to statistically independent
variables. An advantage of MIC is the ability to catch non-
linear associations as well as linear associations (Reshef et
al. 2011). It has no assumption about the distribution of the
measured data. According to Szkely and Rizzo, MIC has
simple computing formula, it applies to sample sizes n > 2.
MIC of two vectors x and y is defined as follows (Zhang et
al. 2014)

MIC = max I‘(m, v) (®)

logamin {ny,n,}

, where
I(z,y) = H(z) + H(y )*H(SC y)
1
= p(x;)log + p(y;)log
Z 2 ) Jz: / 210(%)
_ ZZp x“yj logz (9)
por | ( wyj)

and n,, and n,, are the number of bins of the partition of the
x — axis and y — axis, respectively. Also, ng.n, < B(n),
B(n) = n%¢

Ensemble Correlation Coefficient

Different correlation measures perform differently when
they are applied to different data sets. Some of them de-
tect linear relations while other detect non-linear relations.
In fact, the nonlinear correlation measures themselves, such
as the maximal correlation and MIC, perform differently
and give different scores with non-linear relationships. If
one knew that the relationship between a pair of variables
is monotonic, he/she would choose Spearman’s coefficient
since it is designed to detect such a relation. On the other
hand, in real application, the underline relationship between
a pair of variables is unknown, and one may face difficulty
to decide which correlation method should be trusted. Con-
sequently, selecting the suitable coefficient to detect the as-
sociation could be challenging. Therefore, applying a wide
range of correlation coefficients and ensembling the scores

could result in an improved or more robust score for differ-
ent data sets. In this work, we address this issue and propose
some statistics that involve the joint contribution of several
correlation methods and can be used to ensemble their re-
sults.

After obtaining the aforementioned correlation measures,
we propose the use of all coefficients in an ensemble met-
ric that is calculated as the maximum, mean, or median of
the coefficients. It is important to notice that distance corre-
lation, maximal correlation, and MIC values range between
0 and 1; however, both Pearson’s and Spearman’s correla-
tions range between -1 and 1. Consequently, in order to find
the max, mean, and median, we square Pearson’s and Spear-
man’s correlations to obtain values that range between 0 and
1 for all correlation measures. We have conducted several
simulations to explore these correlation measures and ag-
gregate them to a single representing value as follows.

Simulation

To explore different correlation measures, four separate sim-
ulations were performed. The number of iterations for each
simulation is 100. All simulations compute Pearson’s cor-
relation, Spearman’s correlation, distance correlation, maxi-
mal correlation, and maximal information coefficient (MIC)
for the following relationship types similar to (Reshef et al.
2011): Random, linear, polynomial of fourth order, exponen-
tial, parabolic, sinusoidal with varying frequency, sinusoidal
with fixed frequency, and circle. We have extended the sim-
ulations in (Reshef et al. 2011) by adding several different
scenarios with additive noise levels. For more discussion in
the comparison between Pearson’s correlation, distance cor-
relation, and MIC regarding their power under several re-
lationships, please see (Simon and Tibshirani 2014). They
highlighted that MIC does not always perform best com-
paring with Pearson’s and distance correlation. This was
achieved by obtaining the power of these three measures
with different relationship types and additive noise.

The first simulation we have is performed on noiseless
true signals with aforementioned relationships while the sec-
ond, third, and fourth simulations are performed on true sig-
nal corrupted with low (about 5%), medium (about 20%),
and high (about 40%) level of noise respectively. Moreover,
in each of the four simulations, we find maximum, mean,
and median as our preliminary way to combine the afore-
mentioned measures.

Results

The simulated data is generated for variety of relationship
types under four different cases: First case does not include
noise, second case includes low level noise, third case in-
cludes medium level noise, last case includes high level
noise. Then, Pearson’s correlation, Spearman’s correlation,
distance correlation, maximal correlation, and maximal in-
formation coefficient are applied as well as finding the max-
imum, mean, and median of these statistics.

The first simulation deals with noiseless data generated
for various relationship types, and it computes the scores
of several statistics, which are Pearson’s correlation, Spear-
man’s correlation, distance correlation, maximal correla-
tion, and maximal information coefficient. One can visualize



Table 1: Scores of Pearson’s correlation, Spearman’s correlation, distance correlation, maximal correlation, maximal informa-

tion coefficient, max, mean, and median correlation measures given to various noiseless functional relationships

. . Distance Maximal .
Relationship Type Pearson  Spearman Correlation  Correlation MIC Max Mean Median
Random 0.03 0.04 0.06 0.07 0.13 0.13  0.07 0.06
Linear 1.00 1.00 1.00 1.00 1.00  1.00 1.00 1.00
Polynomial (4th order) 0.06 0.04 0.47 1.00 1.00 1.00 0.51 0.47
Exponential 0.22 1.00 0.29 1.00 1.00 1.00 0.70 1.00
Parabolic 0.05 0.04 0.50 1.00 1.00 1.00 0.52 0.50
Sinusoidal (varying freq) -0.06 -0.05 0.10 0.78 1.00 1.00 0.38 0.10
Sinusoidal (fixed freq 8.17E-18 -1.11E-04 0.09 0.99 1.00 1.00 042 0.09
Circle 2.15E-19  1.49E-03 0.20 1.00 0.68 1.00 0.38 0.20

Table 2: Scores of Pearson’s correlation, Spearman’s correlation, distance correlation, maximal correlation, maximal informa-

tion coefficient, max, mean, and median correlation measures given to various low noisy functional relationships

Distance

Maximal

Relationship Type Pearson ~ Spearman Correlation  Correlation MIC Max Mean Median
Random 0.06 0.08 0.15 0.18 031 031 0.16 0.15
Linear 0.98 0.98 0.98 0.99 1.00 1.00 0.99 0.98
Polynomial (4th order) -0.23 -0.26 0.48 0.99 0.85 099 049 0.48
Exponential 0.20 0.89 0.20 1.00 1.00 1.00 0.66 0.89
Parabolic -0.21 -0.28 0.51 0.99 098 099 052 0.51
Sinusoidal (varying freq) -0.07 -0.07 0.14 0.71 0.53 0.71 0.28 0.14
Sinusoidal (fixed freq) -3.44E-04 -1.68E-04 0.10 0.94 038 094 0.28 0.10
Circle -4.37E-04  -2.26E-03 0.20 0.99 058 099 035 0.20

these noiseless relationship types in figure 1. Table 1 shows
the scores obtained from the first simulation. All correlation
measures assign low scores to random relationship as ex-
pected and appeared in the first row of table 1. It is clear
that Pearson’s correlation assigns score of one to perfectly
linear relationship since there is no noise considered. How-
ever, Pearson’s correlation gives low scores to the rest of re-
lationships since they are nonlinear correlation. Spearman’s
correlation gives score of one to linear, and exponential re-
lationships since Spearman’s correlation assesses monotonic
relationships whether linear or nonlinear. It gives low scores
to the rest of relationship types because they do not present a
monotonic behavior. As Pearson’s correlation, distance cor-
relation results in high scores with linear relationships while
results in low scores with the rest of relationships since dis-
tance correlation does not catch nonlinear relationships. Ad-
ditionally, considering the circle relationship, both Pearson’s
and distance correlations have low scores, but clearly dis-
tance correlation has a very much higher value (0.20) with
circle relation than Pearson’s correlation (2.15¢~17). Maxi-
mal correlation assigns high scores to all relationship types
except of course the random relation. Maximal information
coefficient (MIC) assign scores of one to linear, polynomial
of fourth order, exponential, parabolic, sinusoidal with vary-
ing frequency, and sinusoidal with fixed frequency relation-
ships since these scores are obtained from noiseless relation-
ship, and the similarities in these scores in the case where
there are no noise added proves the equitability property of

MIC that Reshef introduced (Reshef et al. 2011). The score
that is obtained by MIC for the circle relationship is 0.68
which is not equal to one for this noiseless true relationship
(figure 1). As a result, MIC does not satisfy the equitabil-
ity property with circle relation. This was also proven by
Kinney and Atwal (Kinney and Atwal 2014). It is important
to point out that in circle relationship, maximal correlation
(MCQC) outperforms MIC (MC=1.00 , MIC=0.68) although
the circle relation is noiseless. The maximum of all corre-
lation measures in all relationship except random relation is
one since these are true noiseless relations. The mean of all
correlation measures is larger than the median except for ex-
ponential relation. This is because in exponential relation,
three of the measures receive scores of ones, and the other
two receive low scores, impacting the mean to be affected
by the small values while the median is 1.

The second simulation deals also with same relation-
ships corrupted with low noise. These corrupted relation-
ships can be seen in figure 2. It should be noted that the
added noise to the exponential relationship is not visible
because of high amplitude of the signal (y-axis). Table 2
shows all correlation scores as well as maximum, mean,
and median of the correlation measures computed for differ-
ent relationships. All correlation measures have high scores
of about 0.98 for linear relationship. For polynomial of or-
der four and parabolic relationships, only maximal correla-
tion and MIC perform well, since they can detect nonlin-
ear relationship, and maximal correlation is slightly higher



Table 3: Scores of Pearson’s correlation, Spearman’s correlation, distance correlation, maximal correlation, maximal informa-
tion coefficient, max, mean, and median correlation measures given to various medium noisy functional relationships

. . Distance Maximal .
Relationship Type Pearson Spearman Correlation  Correlation MIC Max Mean Median
Random 0.06 0.08 0.15 0.18 0.31 031 0.16 0.15
Linear 0.82 0.82 0.80 0.84 0.71 0.84 0.80 0.82
Polynomial (4th order) -0.19 -0.22 0.39 0.86 049 0.86 0.36 0.39
Exponential 0.20 0.89 0.20 1.00 1.00 1.00 0.66 0.89
Parabolic -0.21 -0.27 0.49 0.96 0.86 096 048 0.49
Sinusoidal (varying freq) -0.07 -0.06 0.15 0.68 049 0.68 0.26 0.15
Sinusoidal (fixed freq) -6.98E-04  2.35E-05 0.11 0.92 039 092 028 0.11
Circle -8.61E-04 -2.53E-03 0.19 0.97 053 097 0.34 0.19

Table 4: Scores of Pearson’s correlation, Spearman’s correlation, distance correlation, maximal correlation, maximal informa-

tion coefficient, max, mean, and median correlation measures given to various high noisy functional relationships

Distance

Maximal

Relationship Type Pearson Spearman Correlation  Correlation MIC Max Mean Median
Random 0.06 0.08 0.15 0.18 031 031 0.16 0.15
Linear 0.58 0.57 0.56 0.61 043 0.61 0.55 0.57
Polynomial (4th order) -0.14 -0.17 0.29 0.63 0.34 0.63 0.26 0.29
Exponential 0.20 0.89 0.20 1.00 1.00 1.00 0.66 0.89
Parabolic -0.16 -0.21 0.37 0.75 048 0.75 034 0.37
Sinusoidal (varying frequency) -0.07 -0.06 0.16 0.58 041 058 0.23 0.16
Sinusoidal (fixed frequency) -1.34E-03  -7.46E-04 0.13 0.77 037 077 0.26 0.13
Circle -2.92E-03  -5.50E-03 0.16 0.60 024 0.60 0.20 0.16

than MIC. For exponential relationship, maximal correla-
tion, MIC, and Spearman’s correlation identify the relation
with high scores. However, in other nonlinear relationships,
sine wave with varying frequency, sine wave with fixed fre-
quency, and circle, maximal correlation clearly outperforms
MIC. For example, in circle relationship, maximal correla-
tion score is 0.99 while MIC score is 0.58. Moreover, the
proposed ensemble correlation measure yields a score that
robustly demonstrates the relationship for all different cases.
Mean correlation is better than median correlation factor in
sinusoidal and circle relations, but the median is better than
the mean correlation for exponential. The mean and median
correlation factors are about the same for other relationships.

The last two simulations consider adding medium and
high noise levels to the relationships as demonstrated in
figure 3 and figure 4, respectively. The corresponding cor-
relation scores are shown in table 3 and table 4, respec-
tively. Also, as shown in table 3 and table 4, comparing be-
tween distance correlation and MIC under noisy linear re-
lation shows that distance correlation performs better than
MIC. This agrees with what Simon and Tibshirani (Simon
and Tibshirani 2014) have commented regarding the power
of these two measures. Their experimental analysis include
computing the power of three correlation methods, two of
which are distance correlation, and MIC for several rela-
tions, one of which is linear. They have shown that in linear
relation, distance correlation has higher power than MIC as
the noise level increases. The Proposed ensemble factor ob-

tains a high score of 0.61 by averaging several correlation
measures such as distance correlation and MIC.

Conclusions

For prediction and decision making purposes, we need to
discover the relationship between different variables in a
dataset. Often, the relation between two variables is quan-
tified and represented by a correlation coefficient. The cor-
relation can then be used to make predictions and informed
decisions. Strong relationship between variables can help
with more accurate predictions. There are several correlation
coefficients such Pearson’s correlation, distance correlation,
and maximal information coefficients. Each of which can
better identify a specific type of relationship between two
variables. We have studied them in this work and proposed
different ways to ensemble them to a single representative
coefficient. It is desirable to have a single factor capable of
explaining the relationship between variables in a dataset.
Although, the proposed aggregation methods are prelimi-
nary ways to combine different correlation coefficients, this
work provides some insights about an interesting idea. Our
future research will be conducted to develop a more sophisti-
cated method to aggregate different correlation coefficients.
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