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Abstract

The main goal of this paper is to establish generalization
bounds for minimum volume set estimation for regenerative
Markov chains. We obtain new maximal concentration in-
equality in order to show that learning rate bounds depend
not only on the complexity of the class of candidate sets but
also on the ergodicity rate of the chain X , expressed in terms
of tail conditions for the length of the regenerative cycles.
Finally, we show that it is straightforward to extend the pre-
ceding results to the Harris recurrent case.

Preliminaries
Machine learning theory for dependent processes has been
intensively investigated in the last years, see for instance
[1], [2], [14] or [6] for the results stated in a very general
setting. In statistical learning theory, numerous works estab-
lished non-asymptotic bounds assessing the generalization
capacity of empirical risk minimizers under a large variety
of complexity assumptions for the class of decision rules
over which optimization is performed, by means of sharp
control of uniform deviation of i.i.d. averages from their
expectation, while fully ignoring the possible dependence
across training data in general. It is the purpose of this paper
to show that similar results can be obtained when statistical
learning is based on a data sequence drawn from a (Har-
ris positive) Markov chain X , through the example of es-
timation of minimum volume sets (MV-sets) related to X’s
stationary distribution. The generalization bounds for MV-
set estimation problem in the i.i.d. setting were established
in [13]. Since then, the result has been extended to strong
mixing processes in [4]. We aim to generalize the afore-
mentioned bounds for a more general classes of dependent
processes.

Background on Markov chain theory
Throughout the paper, X = (Xn)n∈N is a ψ-irreducible
time-homogeneous Markov chain, valued in a countably
generated measurable space (E, E) with transition proba-
bility Π(x, dy) and initial distribution ν (refer to [12] for
an account of the Markov chain theory). In addition, Pν
means the probability measure on the underlying space such
that X0 ∼ ν. We write Px when considering the Dirac
mass at x ∈ E. The expectations under Pν and Px are

denoted by Eν [.] and Ex[.] respectively. We assume fur-
ther that the chain X is Harris recurrent, meaning that the
chain visits an infinite number of times any subset B ∈ E
such that ψ(B) > 0 with probability one whatever the ini-
tial state, ψ being a maximal irreducibility measure, i.e.
Px(
∑
n≥1 I{Xn ∈ B} = ∞) = 1, for all x ∈ E. Within

this framework, a Markov chain is said to be regenerative
when it possesses an accessible atom

Definition 1. Assume thatX is aperiodic and ψ-irreducible.
We say that a set A ∈ E is an accessible atom if for all
x, y ∈ A we have Π(x, ·) = Π(y, ·) and ψ(A) > 0.

We say that X is positive recurrent if and only if the ex-
pected return time to the atom is finite, i.e. EA[τA] < ∞.
Then, it follows from the Kac’s theorem that the invariant
probability distribution µ is the Pitman’s occupation mea-
sure given by

µ(B) =
1

EA[τA]
EA

[
τA∑
i=1

I{Xi ∈ B}

]
, for all B ∈ E .

(1)
We define the sequence of regeneration times (τA(j))j≥1.

Let τA = τA(1) = inf{n ≥ 1 : Xn ∈ A} and τA(j) =
inf{n > τA(j − 1), Xn ∈ A} for j ≥ 2. By the strong
Markov property, given any initial law ν, the sample paths
of X can be divided into i.i.d. blocks corresponding to con-
secutive visits of the chain to atom A. The segments of data
are of the form: Bj = (X1+τA(j), · · · , XτA(j+1)), j ≥ 1

and take values in the torus ∪∞k=1E
k.

We introduce few more pieces of notation: we write
ln =

∑n
i=1 I{Xi ∈ A} for the total number of consecu-

tive visits of the chain to the atom A. We make the conven-
tion that B(n)

ln
= ∅ when τA(ln) = n. Denote by l(Bj) =

τA(j+1)−τA(j), j ≥ 1, the length of regeneration blocks.
In this framework we also consider more general class of

Markov chains, namely Harris recurrent Markov chains.

Definition 2. Assume that X is a ψ-irreducible Markov
chain. We say that X is Harris recurrent iff, starting from
any point x ∈ E and any set such that ψ(A) > 0, we have

Px(τA < +∞) = 1.

Observe that the property of Harris recurrence ensures
that X visits set A infinitely often a.s. (see also [7] for



more details). Suppose that X is a positive recurrent Harris
Markov chain. By the results of Nummelin in [8], it is pos-
sible to generalize the theory from atomic case to general
Harris case through the construction of an artificial atom.
The Nummelin splitting technique relies on the existence
of so-called small sets, which have the following property:
there exists a parameter δ > 0, a positive probability mea-
sure Φ supported by S and an integer m ∈ N∗ such that

∀x ∈ S, A ∈ E Πm(x,A) ≥ δ Φ(A), (2)

where Πm designates the m-th iterate of the transition prob-
ability Π. We call (2) the minorization condition and denote
byM.
The Nummelin technique. We now explain how to con-
struct the atomic chain onto which the initial chain X is em-
bedded. Suppose that X satisfiesM = M(m,S, δ,Ψ) for
S ∈ E such that ψ(S) > 0. Rather than replacing the initial
chainX by the chain {(Xnm, ..., Xn(m+1)−1)}n∈N, we sup-
pose m = 1. The sample space is expanded so as to define
a sequence (Yn)n∈N of independent Bernoulli r.v.’s with pa-
rameter δ by defining the joint distribution Pν,M whose con-
struction relies on the following randomization of the tran-
sition probability Π each time the chain hits S. Note that it
occurs with probability one since the chain is Harris recur-
rent and ψ(S) > 0. If Xn ∈ S, and
• if Yn = 1 (occurs with probability δ ∈ ]0, 1[), then
Xn+1 ∼ Φ,

• if Yn = 0, then Xn+1 ∼ (1− δ)−1(Π(Xn, .)− δΦ(.)).

Set Berδ(β) = δβ+ (1− δ)(1−β) for β ∈ {0, 1}. We have
thus constructed the split chain {(Xn, Yn)}n∈N, valued in
E × {0, 1} with transition kernel ΠM defined by

• for any x /∈ S, B ∈ E , β and β′ in {0, 1} ,

ΠM ((x, β) , B × {β′}) = Π (x,B)× Berδ(β′),

• for any x ∈ S, B ∈ E , β′ in {0, 1},
– ΠM ((x, 1) , B × {β′}) = Φ(B)× Berδ(β′)
– ΠM ((x, 0) , B × {β′}) = (1 − δ)−1(Π (x,B) −
δΦ(B))× Berδ(β′).

The key point of the construction relies on the fact that
AS = S × {1} is the atom for the bivariate chain (X,Y )
which inherits all communication and stochastic stability
properties from X .

Minimum Volume Set Estimation
The notion of Minimum Volume set (MV-set) has been
proposed in [5] in order to extend the definition of quan-
tile for 1-dimensional probability distributions. Consider
a probability distribution µ on a measurable space (E, E).
Let α ∈ (0, 1) and λ be a σ-finite measure of reference
on (E, E), any solution of the minimization problem

min
Ω∈E

λ(Ω) subject to µ(Ω) ≥ α (3)

is called a MV-set of level α. Throughout the paper, we
assume that the distribution µ is absolutely continuous w.r.t.
λ and denote by f(x) = (dµ/dλ)(x) the related density.

For any α ∈ (0, 1), under the assumptions that the density f
is bounded and that the image of µ by f , denoted by µf , is
a continuous probability on R+, it is shown in [11] that the
set Ω∗α = {x ∈ E : f(x) ≥ µ−1

f (1 − α)} is the unique
solution of the MV-set estimation problem (3). For small
values of the mass level α, MV-sets should permit to recover
the modes of the distribution µ, while their complementary
sets correspond to rare observations when α is large.

Empirical MV-sets in the i.i.d. setting. A level α ∈ (0, 1)
being preliminarily fixed, a natural way of building esti-
mates of the MV set Ω∗α from the i.i.d. data X1, . . . , Xn ∼
µ(dx) consists in solving a statistical version of the con-
strained optimization problem (3)

min
Ω∈G

λ(Ω) subject to µ̂n(Ω) ≥ α− ψn, (4)

where the empirical distribution µ̂n = (1/n)
∑n
i=1 δXi

(or
a smoothed counterpart of the latter) replaces the unknown
probability measure µ, minimization is restricted to a subset
G of E , expected to be sufficiently rich to include a reason-
able approximation of Ω∗α, and ψn plays the role of a toler-
ance parameter, chosen of the same order of magnitude as
the supremum supΩ∈G |µ̂n(Ω)−µ(Ω)|. This approach, that
essentially boils down to substituting the true (unknown)
probability measure µ(dx) with its statistical counterpart is
referred to as MV-ERM in [13]. The class G is ideally made
of sets Ω ∈ E whose volume λ(Ω) can be efficiently com-
puted or estimated, e.g. by Monte-Carlo simulation.

Main Results
We now state the main results of the paper, related to the
performance of solutions of the problem (4) when the em-
pirical probability estimates µ̂n(Ω) are based on a Marko-
vian trajectory of length n ≥ 1. For simplicity, we assume
that E ⊂ Rd with d ≥ 1 and that λ(dx) is the restriction of
Lebesgue measure on E equipped with its Borel σ-algebra.
We first address the case where the underlying Markov chain
is regenerative and explain next how this apparently restric-
tive result can be straightforwardly extended to general pos-
itive recurrent chains.

We start with considering the situation where the positive
recurrent Markov chain X possesses an accessible atom A.
Its stationary distribution is then given by (1) and its empir-
ical counterpart based on the sequence X1, . . . , Xn can be
rewritten as: ∀ Ω ∈ E ,

µ̂n(Ω) =
1

n

τA∑
i=1

I{Xi ∈ Ω}+
ln − 1

n

 1

ln − 1

ln−1∑
j=1

Sj(Ω)


+

1

n

n∑
i=1+τA(ln)

I{Xi ∈ Ω}, (5)

where the occupation time of the set Ω between the j-th
and (j + 1)-th regeneration times is denoted by Sj(Ω) =∑
τA(j)<i≤τA(j+1) I{Xi ∈ Ω} for j ≥ 1 and with the usual

convention that empty summation is equal to zero. Under
the assumptions we made, the Sj(Ω)’s are integrable i.i.d.



r.v.’s with common mean EA[τA]µ(A), ln ∼ n/EA[τA]
almost-surely as n → +∞ and the first and last terms in
the equation above both almost-surely asymptotically van-
ish. Hence, the random variables Sj(Ω)/EA[τA] shall play
the role of training observations in the subsequent analysis:
the smaller the expected cycle length E[τA], the larger the
probability to observe a high number of training observa-
tions. However, one must pay attention to the fact that the
ln−1 regeneration data blocks, though asymptotically i.i.d.,
are not independent. Except for the i.i.d. situation (notice
that in such case, the whole state space E can be viewed as
an atom), the frequency of visits to a candidate set Ω over the
path X1, . . . , Xn is not an i.i.d. average. Decomposition
(5) is the main ingredient to control supΩ∈G |µ̂n(Ω)−µ(Ω)|.
We will need the following assumptions in the subsequent
analysis. Let p ≥ 2.

Assumption 1. The collection of indicator functions on E,
F = {I{x ∈ Ω} : Ω ∈ G} is a uniform Donsker class
(relative toL1) with polynomial uniform covering numbers1,
i.e. there exists a constant c > 0 s.t. ∀ζ > 0,

N1(ζ,F)
def
= sup

Q
N (ζ,F , L1(Q)) ≤ c(1/ζ)p,

where the supremum is taken over the set of finitely discrete
probability measures on (E, E).

Assumption 2. We have: EA[τpA] < ∞, Eν [τpA] < ∞ and
EA[l(B1)]p <∞.

Under Assumption 2, the ergodicity rate of the chain X
is at least subgeometric, polynomial namely, in the sense
that suph: ||h||∞≤1 |h(Xn)− µ(h)| = O(1/np−1), see [16].
As the following theorem shows, Assumption 2 combined
with Assumption 1 allows to control the fluctuations of (5)
uniformly over G. In addition, we point out that the degree
p ≥ 2 involved in Assumptions 1 and 2 is the same here, for
the sole purpose of establishing learning rate for the MV-
ERM method.

Before we establish generalization bounds for the MV-
set, we state a new concentration inequality since the proof
of our generalization bounds heavily relies on it. We in-
dicate that our inequality may be used to show generaliza-
tion bounds of numerous machine learning algorithms for
Markovian data under appropriate change of the underlying
assumptions such as block moment assumptions or a com-
plexity condition imposed on the considered class of func-
tions F . Let σ2

m = maxΩ∈G σ
2(Sj(Ω)).

Lemma 1. Let ζ > 0 and p ≥ 2. Suppose that Assumptions
1-2 are fulfilled and supQN (ζ/120,F , L1(Q)) < +∞.
Then, for all ζ > 0, we have: ∀n ≥ 602σ2

m

ζ2 and for any

1Recall that, for any ζ > 0 and probability measureQ, the cov-
ering number N (ζ,F , L1(Q)) is the minimal number of L1(Q)
balls of radius ζ needed to cover the class F .

Ml > 0

Pν

{
sup
f∈F

∣∣∣∣∣ 1n
ln∑
i=1

Si(Ω)− Eµ(Si(Ω))

∣∣∣∣∣ ≥ ζ
}

≤ N1 (ζ1,F)× C1

ζp × np/2−1
+ C2PA

(
n∑
i=1

l(Bi) > Un

)
,

where ζ1 = ζ
120MlEA[τA] , Un = nMlEA[l(B1]) and

C1, C2 are constants which can be explicitly computed and
are given in the proof.

Remark 1. Note that it is easy to obtain a bound for the
probability PA (

∑n
i=1 l(Bi) > Un) (Un = nMlEA[l(B1)])

since
∑n
i=1 l(Bi) is a sum of i.i.d. random variables. Under

Assumption 2 it follows directly from Theorem 2.10 in [9]
that for any Ml > 1

PA

(
n∑
i=1

l(Bi) > Un

)
≤ K

np/2(Ml − 1)p
,

where K = CEA[l(B1)]p

(EA[l(B1)])p and C is a positive constant that
depends only on p. Obviously, under sharper moment condi-
tions imposed on l(Bi)

′
s, one can obtain exponential bounds

for the aforementioned probability.

Observe that the larger the degree p that controls in par-
ticular the decay of the tail of the distribution of the regen-
eration cycle length (and X’s ergodicity rate) and thus the
distribution of the number of cycles within a trajectory of
finite length, the smaller the rate bound for the maximal de-
viation (and thus the learning rate of the MV-ERM method,
see the result below). For p → +∞, one asymptotically
recovers the usual i.i.d. bound.

Proof of Lemma 1. Firstly, we deal with the random number
of blocks ln which is correlated with the blocks itself. By the
Montgomery-Smith inequality (see [3], Theorem 1.1.5) we
get immediately that

Pν

sup
Ω∈G

∣∣∣∣∣∣
ln−1∑
j=1

{Sj(Ω)− Eµ[Sj(Ω)]}

∣∣∣∣∣∣ ≥ ζ


≤ 9PA

sup
Ω∈G

∣∣∣∣∣∣
n∑
j=1

{Sj(Ω)− Eµ[Sj(Ω)]}

∣∣∣∣∣∣ ≥ ζ/30

 .

(6)

We now explain how to apply standard arguments in empir-
ical processes theory to the latter.
Ghost sample of regeneration blocks and symmetriza-
tion. Consider an i.i.d. sample (B′1, . . . , B′n), independent
copy of the sample of regenerative blocks (B1, . . . , Bn).
The corresponding sample of block variables

S′ = (S′1(Ω), . . . , S′n(Ω))

is an independent copy of

S = (S1(Ω), . . . , Sn(Ω)) for any Ω ∈ G.



Using the symmetrization lemma in [10] (see p. 14 therein),
we have: ∀ζ > 0,

PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(Sj(Ω)− Eµ(Sj(Ω)))

∣∣∣∣∣∣ ≥ ζ

30


≤ 1

β
PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(Sj(Ω)− S′j(Ω))

∣∣∣∣∣∣ ≥ ζ

60

 ,

where β = 1−602σ2
m/(nζ

2). In order to ensure that β > 0,
assume that n > 602σ2

m/ζ
2.

Randomization. Let ε1, . . . , εn be independent
Rademacher variables, independent from the (Bj ,B′j)’s. We
clearly have: ∀ζ > 0, ∀n > 602σ2

m/ζ
2 and for any Ml > 0,

PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
n∑
j=1

{Sj(Ω)− S′j(Ω)}

∣∣∣∣∣∣ ≥ ζ

60


= PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(
Sj(Ω)− S′j(Ω)

)
εi

∣∣∣∣∣∣ ≥ ζ

60


≤ 2PA

(
sup
Ω∈G

∣∣∣∣∣ 1n
n∑
i=1

Sj(Ω)εi

∣∣∣∣∣ ≥ ζ

60
,

n∑
i=1

l(Bi) ≤ Un

)

+ 2PA

(
n∑
i=1

l(Bi) > Un

)
,

where Un = nMlEAl(Bi). In what follows, we will con-
centrate on the analysis of the first term in the right hand
side of the inequality above.

Classes of functions on the torus. Observe that one may
naturally assign to any measurable function f : E → R a
function fT on the torus T = ∪n≥1E

n, defined by

fT(b) = fT(x1, . . . , xn) =

n∑
i=1

f(xi)

for any n ≥ 1, b = (x1, . . . , xn) ∈ En, which is measur-
able when T is equipped with the σ-field generated by the
finite cartesian products of borelian subsets of E. Thus, we
may associate the class of indicator functions

F = {I{x ∈ Ω} : Ω ∈ G} on E

with

FT = {fT : f ∈ F} =

b ∈ T 7→
l(b)∑
i=1

I{bi ∈ Ω}, Ω ∈ G

 .

Note that over the set of blocks such that

1

n

n∑
i=1

l(Bi) ≤MlEAl(Bi)

we have the following ∀(f, g) ∈ F2

‖fT−gT‖LT
n

=
1

n

n∑
i=1

|f(bi)− g(bi)|

≤ 1

n

n∑
i=1

τA(i+1)∑
j=τA(i)

|f(xj)− g(xj)|

≤MlEAl(Bi)
1∑n

i=1 l(Bi)

∑n
i=1 l(Bi)∑
j=1

|f(xj)− g(xj)|

= MlEA[τA]‖f − g‖L1,P̂n
, (7)

where

P̂n =
1∑n

i=1 l(bi)

∑n
i=1 l(bi)∑
j=1

δxj
.

It follows from (7) that for any ζ > 0

N1

(
ζ,FT,PT

n

)
≤ N1

(
ζ

MlEA[τA]
,F , P̂n

)
≤ N1

(
ζ

MlEA[τA]
,F
)
.

Let h1, h2, · · · , hN be a collection of measurable functions
on T such that any fT ∈ FT is at distance less than ζ/120
w.r.t. the L1-norm related to the empirical measure of the
blocks B1, . . . , Bn and N ≤ N1(ζ/120,F). We have:

EB

Pε
sup

Ω∈G

∣∣∣∣∣∣ 1n
n∑
j=1

(Sj(Ω)) εi

∣∣∣∣∣∣ ≥ ζ

60
,

n∑
i=1

l(Bi) ≤ Un




≤ EB

[
Pε

{
max
j

∣∣∣∣∣ 1n
n∑
i=1

(hj(Bi)) εi

∣∣∣∣∣ ≥ ζ

120
,

n∑
i=1

l(Bi) ≤ Un

}]
(8)

≤ N1(ζ1,F) max
j

EBPε

{
max
j

∣∣∣∣∣ 1n
n∑
i=1

(hj(Bi)) εi

∣∣∣∣∣ ≥ ζ

120

}
,

(9)

where ζ1 = ζ
120MlEA[τA] and 1 ≤ j ≤ N1( ζ

120 ,GT,Pn,T).

Finally, we apply to (8) the inequality given in Theorem 2.10
in [9] and get the following bound:

Pν

{
sup
f∈F

∣∣∣∣∣ 1n
ln∑
i=1

Si(Ω)− Eµ(Si(Ω))

∣∣∣∣∣ ≥ ζ
}

≤ N1 (ζ1,F)× 36× 5760pe

βζp × n p
2−1

EA[τA]p

that yields the result. We take C1 =
36×5760peEA[τp

A]

β and
C2 = 18

β .

Now we are ready to state our main theorem.

Theorem 1. Let p ≥ 2. Suppose that Assumptions 1-2 are
fulfilled. For all δ = δ1 + δ2 + δ3 + δ4 ∈ (0, 1), we have



with probability at least 1− δ : ∀ζ > 0 ∀n ≥ 2×3602σ2
m

ζ2 ,

sup
Ω∈G
|µ̂n(Ω)− µ(Ω)|

≤ max

[(
K1

δ1np

)1/p

,

(
K2

δ2np

)1/p

,

(
K3

n−1(np/2δ3 − 2pK3

)1/2p

,

(
K4

δ4np/2−1

)1/2p
]
,

(10)

where K1,K2,K3,K4 are constants depending on p,
EA[τpA], Eν [τpA], EA[l(B1)]p and the complexity and are
specified in the proof.

Proof of Theorem 1. Firstly, we do the following decompo-
sition:

Pν
{

sup
Ω∈G
|µ̂n(Ω)− µ(Ω)| ≥ ζ

}
≤ Pν

{
sup
Ω∈G

∣∣∣∣∣ 1n
τA∑
i=1

I{Xi ∈ Ω} − µ(Ω)

∣∣∣∣∣ ≥ ζ

3

}

+ PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
ln−1∑
j=1

{Sj(Ω)− Eµ[Sj(Ω)]}

∣∣∣∣∣∣ ≥ ζ

3


+ PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
τA(ln+1)∑
i=τA(ln)+1

I{Xi ∈ Ω} − µ(Ω)

∣∣∣∣∣∣ ≥ ζ

3

 .

(11)

The first and the last terms on the right hand side of the
inequality can be easily controlled by the Chebyshev’s in-
equality, i.e.

Pν

{
sup
Ω∈G

∣∣∣∣∣ 1n
τA∑
i=1

I{Xi ∈ Ω} − µ(Ω)

∣∣∣∣∣ ≥ ζ

3

}
≤ K1

npζp
,

where K1 = 6pEν [τpA] and

PA

sup
Ω∈G

∣∣∣∣∣∣ 1n
n∑

i=τA(ln)+1

I{Xi ∈ Ω} − µ(Ω)

∣∣∣∣∣∣ ≥ ζ

3

 ≤ K2

npζp
,

observing that the length of the last block is less than τA(ln+
1) − τA(ln) and complementing the data up to the next re-
generation time τA(ln + 1) + 1. We take K2 = 6pEA[τpA].
The control of the middle term in (11) follows directly from
Lemma 1. We combine Assumption 1 with Remark 1 and
obtain for any Ml > 1

Pν

{
sup
Ω∈G

∣∣∣∣∣ 1n
ln−1∑
i=1

(Si(Ω)− Eµ(Si(Ω)))

∣∣∣∣∣ ≥ ζ/3
}

≤
C1M

p
l

ζ2p × np/2−1
+

C2

np/2(Ml − 1)p
(12)

where ζ1 = ζ
360MlEA[τA] C1 = [36c × 360p × 3p ×

5760peEA[τA]2p]/[1 − 3602σ2
m/(nζ

2)], C2 = (18 ×

72peEA[l(Bi)]
p)/[(1−3602σ2

m/(nζ
2))×(EAl(B1))p].We

note that 1/[1−3602σ2
m/(nζ

2)] ≤ 2 for n ≥ 2×3602σ2
mζ

2.
For simplicity’s sake we consider the case when n ≥ 2 ×
3602σ2

mζ
2. Next, we optimize (12) in terms of Ml and get

Ml = 1 + ζ2n−1/p. (13)

We solve the following equations for ζ with Ml given
by (13):

δ1 =
K1

ζ × np
,

δ2 =
K2

ζ × np

δ3 =
K3M

p
l

ζ2p × np/2−1
,

δ4 =
K4

np/2(Ml − 1)p
,

where K3 = 72× 6p× 360p× c× 5760peEA[τA]2p, K4 =
18× 72peEA[l(B1)]p/(EAl(B1))p. Easy calculations show
that the desired bound can be established by taking for n ≥
2× 3602σ2

mζ
2 :

ζ ≤ max

[(
K1

δ1np

)1/p

,

(
K2

δ2np

)1/p

,

(
K3

n−1(np/2δ3 − 2pK3

)1/2p

,

(
K4

δ4np/2−1

)1/2p
]
.

A direct application of Theorem 1 to the MV-set estima-
tion problem yields the following result.
Theorem 2. Suppose that assumptions of Theorem 1 are
fulfilled. Then, for all δ = δ1 + δ2 + δ3 + δ4 ∈ (0, 1), any
solution Ω̂n of (4) with

ψn(δ)
def
= max

[(
K1

δ1np

)1/p

,

(
K2

δ2np

)1/p

,

(
K3

n−1(np/2δ3 − 2pK3

)1/2p

,

(
K4

δ4np/2−1

)1/2p
]

satisfies, with probability at least 1− δ,

λ(Ω̂n) ≤ λ(Ω∗α) +

{
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗α)

}
and

µ(Ω̂n) ≥ α− 2ψn(δ).

ConstantsK1,K2,K3 andK4 are given in the proof of The-
orem 1.

Proof. The proof is analogous to that of Theorem 11 in [13].
Define

Θµ = {S : µ(Ω̂n) < α− 2ψ(S, δ)},
Γµ = {S : sup

Ω∈G
|µ̂n(Ω)− µ(Ω)| − ψ(S, δ) > 0},

Gα = {Ω ∈ G : µ(Ω) ≥ α}.



Note that S ∈ Γµ implies α − µ(Ω̂n) ≤ 2ψ(S, δ). Next,
observe that when S ∈ ΓCµ , with probability at least 1 − δ
we have:

λ(Ω̂n) ≤ λ(Ω∗α) +

{
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗α)

}
which yields the proof.

It is straightforward to extend the preceding results into
a Harris recurrent case when the regeneration properties for
Harris chains can be recovered via the Nummelin splitting
technique.
Assumption 3. We have: supx∈S Ex[τpS ] < ∞, Eν [τpS ] <
∞ and supx∈S Ex[l(B1)]p <∞.

It is noteworthy that the hypothesis above is independent
from the small set chosen. In addition, this assumption im-
plies that (X,Y ) automatically fulfills Assumption 2, refer
to Chapter 14 in [7] for further details. Recall also that these
conditions can be replaced by Foster-Lyapunov drift condi-
tions that are much more tractable in practice, see e.g. Chap-
ter 11 in [7]. The following theorem gives a generalization
bound for MV-set estimation problem in a Harris recurrent
case. The proof is analogous to the proof of Theorem 2 (with
obvious modifications as we apply the same arguments to
the split chain).
Theorem 3. Suppose that Assumptions 1-3 are fulfilled.
Then, for all δ = δ1 + δ2 + δ3 + δ4 ∈ (0, 1), any solution
Ω̂n of (4) with

ψn(δ)
def
= max

[(
K1

δ1np

)1/p

,

(
K2

δ2np

)1/p

,

(
K3

n−1(np/2δ3 − 2pK3

)1/2p

,

(
K4

δ4np/2−1

)1/2p
]

satisfies, with probability at least 1− δ,

λ(Ω̂n) ≤ λ(Ω∗α) +

{
inf

Ω∈G: µ(Ω)≥α
λ(Ω)− λ(Ω∗α)

}
and

µ(Ω̂n) ≥ α− 2ψn(δ).

The constants K1,K2,K3 and K4 can be explicitly com-
puted and are given in the proof.

Proof. The proof boils down to solving the set of equations
for ζ :

δ1 =
K1

ζ × np
,

δ2 =
K2

ζ × np

δ3 =
K3M

P
l

ζ2p × np/2−1
,

δ4 =
K4

np/2(Ml − 1)p
,

for n ≥ 2 × 3602σ2
mζ

2 and with K1 =
6pEν [τpS ], K2 = 6p supx∈S Ex[τpS ], K3 =
72 × 6p × 360p × c × 5760pe supx∈S Ex[τS ]2p and
K4 = 18× 72pe supx∈S Ex[l(B1)]p/(supx∈S Exl(B1))p.

Conclusion
In this paper, we extended the analysis of the generalization
ability of MV-ERM methods to the situation where data are
drawn from a (possibly nonstationary) subgeometrically er-
godic Markov chains by means of the regenerative method.
In particular, a novel maximal concentration inequality is es-
tablished in this context. We established the generalization
bound for regenerative Markov chains and showed how it
can be easily extended to a Harris recurrent case.The present
study paves the way for extending the (non-asymptotic) va-
lidity framework of machine-learning algorithms to situa-
tions where training data exhibit a Markovian dependence
structure, or are drawn from a (pseudo-) regenerative pro-
cess more generally, see [15].
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